Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection

نویسندگان

  • Harish Bhaskar
  • Lyudmila Mihaylova
  • Simon Maskell
چکیده

Detection is an inherent part of every advanced automatic tracking system. In this work we focus on automatic detection of humans by enhanced background subtraction. Background subtraction (BS) refers to the process of segmenting moving regions from video sensor data and is usually performed at pixel level. In its standard form this technique involves building a model of the background and extracting regions of the foreground. In this paper, we propose a cluster-based BS technique using a mixture of Gaussians. An adaptive mechanism is developed that allows automated learning of the model parameters. The efficiency of the designed technique is demonstrated in comparison with a pixel-based BS [ZdH06].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

Application of adaptive sampling in fishery part 1: Adaptive cluster sampling and its strip designs

Abstract:  The precision of conventional sampling designs is not usually satisfactory for estimating parameters of clump and rare populations. Many of fish species live in school and disperse all over a vast area like a sea so that they are rare compare to their habitats. Theory of a class of sampling designs called adaptive sampling designs has rapidly grown during last decade which solved the...

متن کامل

Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems

vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...

متن کامل

An Automatic Detection of the Fire Smoke Through Multispectral Images

One of the consequences of a fire is smoke. Occasionally, monitoring and detection of this smoke can be a solution to prevent occurrence or spreading a fire. On the other hand, due to the destructive effects of the smoke spreading on human health, measures can be taken to improve the level of health services by zoning and monitoring its expansion process. In this paper, an automated method is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007